Nuclear dimension for an inclusion of unital C*-algebras

Hiroyuki Osaka (Ritsumeikan University, Japan)

Joint work with Tamotsu Teruya

THE SPECIAL WEEK ON OPERATOR ALGEBRAS EAST CHINA NORMAL UNIVERSITY JUNE 20-24, 2011

Motivation

Question 1. Given an inclusion $P \subset A$ of unital C*-algebras, how closely related is P in A?

If the Jones index of a II_1 factor N is finite with respect to a II_1 -factor M, then M and N share many common properties such that as hyperfiniteness, property Γ , property T, as shown by [Pimsner and Popa:86].

In the case of inclusion of simple C*-algebras with a finite Watatani index we could not hope such an thing. In fact there are examples of inclusion $CAR \subset CAR \rtimes_{\alpha} \mathbf{Z}/2\mathbf{Z}$ such that $CAR \rtimes_{\alpha} \mathbf{Z}/2\mathbf{Z}$ are not AF by [Blackadar:90] and [Elliott:89].

Let A be a unital C*-algebra and α an (amenable) action from a discrete group G on A, and $A\rtimes_{\alpha}G$ its crossed product algebra.

$$A \subset A \rtimes_{\alpha} G$$

Conditions for A	G	α	$A \rtimes_{\alpha} G$
(1) Simplicity	any	outer	
(2) Property (SP) $+$ (1)	any	outer	0
(3) Stable rank one	\mathbf{Z}	any	≤ 2
	finite	Rokhlin	
(2) + (3)	finite	any	≤ 2
(4) Real rank zero	finite	Rokhlin	0
(5) The order on projections	finite	Rokhlin	0
is determined by traces			
(6) AF, AI, AT, AD	finite	Rokhlin	
(7) AH with s.d.g. $+(1)+(4)$	finite	Rokhlin	0
(8) \mathcal{Z} -stability	finite	Rokhlin	0
		Rokhlin	

To generalize the previous results for an inclusion of unital C*-algebras $P\subset A$ we will give an attention to a canonical conditional expectation $E\colon A\rtimes_{\alpha}G\to A$ by $E(\sum_g a_g u_g)=a_0$, where $u\colon G\to A\rtimes_{\alpha}G$ is a unitary representation such that $u_g a u_g^*=\alpha_g(a)$ for any $a\in A$ and $g\in G$.

In this talk we assume that there is a (faithful) conditional expectation $E \colon A \to P$.

The following is the contents of this talk:

- 1. C*-index theory
- 2. Rokhlin property
- 3. Strongly self-absorbing
- 4. Nuclear dimension

C*-index theory

Definition 2. (Watatani:90)

Let $P \subset A$ be an inclusion of unital C*-algebras with a conditional expectation E from A onto P.

1. A quasi-basis for E is a finite set $\{(u_i, v_i)\}_{i=1}^n \subset A \times A$ such that for every $a \in A$,

$$a = \sum_{i=1}^{n} u_i E(v_i a) = \sum_{i=1}^{n} E(au_i) v_i.$$

2. When $\{(u_i,v_i)\}_{i=1}^n$ is a quasi-basis for E, we define $\mathrm{Index}E$ by

$$Index E = \sum_{i=1}^{n} u_i v_i.$$

When there is no quasi-basis, we write $Index E = \infty$. Index E is called the Watatani index of E.

Remark 3. We give several remarks about the above definitions.

- 1. IndexE does not depend on the choice of the quasi-basis in the above formula, and it is a central element of A.
- 2. Once we know that there exists a quasi-basis, we can choose one of the form $\{(w_i, w_i^*)\}_{i=1}^m$, which shows that IndexE is a positive element.
- 3. By the above statements, if A is a simple C^* -algebra, then $\mathrm{Index}E$ is a positive scalar.
- 4. If $\mathrm{Index} E < \infty$, then E is faithful, that is, $E(x^*x) = 0$ implies x = 0 for $x \in A$.
- 5. If $\mathrm{Index} E < \infty$, then there is a basic construction $C^*\langle A, e_p \rangle$ such that

$$C^*\langle A, e_p \rangle = \{ \sum_{i=1}^n x_i e_p y_i : x_i, y_i \in A, n \in \mathbf{N} \}$$

and

$$P \subset A \subset C^*\langle A, e_p \rangle$$
,

where e_p is called the Jones projection which satisfies $e_pae_p=E(a)e_p$ for $a\in A$ and $e_px=xe_p$ for $x\in P$.

6. If $\mathrm{Index}E$ is finite, then $\mathrm{Index}E$ is a central invertible element of A and there is the dual conditional expectation \hat{E} from $C^*\langle A, e_P\rangle$ onto A such that

$$\hat{E}(xe_P y) = (\text{Index}E)^{-1} xy \text{ for } x, y \in A$$

by Proposition 2.3.2 of [Watatani:90]. Moreover, \hat{E} has a finite index and faithfulness.

The following is a model for an inclusion of unital C*-algebras:

Let A be a unital C*-algebra and α an action of a finite group G on A. Suppose that α is outer. Then

$$A^G \subset A \subset A \rtimes_{\alpha} G$$

is a basic construction.

Rokhlin property

Definition 4. (Izumi:04) Let α be an action of a finite group G on a unital C^* -algebra A. α is said to have the $Rokhlin\ property$ if there exists a partition of unity $\{e_g\}_{g\in G}\subset A'\cap A^\infty$ consisting of projections satisfying

$$(\alpha_g)_{\infty}(e_h) = e_{gh}$$
 for $g, h \in G$.

We call $\{e_g\}_{g\in G}$ Rokhlin projections.

Here

$$c_0(A) = \{(a_n) \in l^{\infty}(\mathbf{N}, A) : \lim_{n \to \infty} ||a_n|| = 0\}$$
$$A^{\infty} = l^{\infty}(\mathbf{N}, A)/c_0(A).$$

We identify A with the C^* -subalgebra of A^∞ consisting of the equivalence classes of constant sequences.

The following observation is our motivation to introduce the Rokhlin property for the inclusion of unital C*-algebras with a finite C*-index.

Proposition 5. (Kodaka-Osaka-Teruya 08) Let α be an action of a finite group G on a unital C^* -algebra A and E the canonical conditional expectation from A onto the fixed point algebra $P=A^{\alpha}$ defined by

$$E(x) = \frac{1}{\#G} \sum_{g \in G} \alpha_g(x) \quad \text{for } x \in A,$$

where #G is the order of G. Then α has the Rokhlin property if and only if there is a projection $e \in A' \cap A^{\infty}$ such that $E^{\infty}(e) = \frac{1}{\#G} \cdot 1$, where E^{∞} is the conditional expectation from A^{∞} onto P^{∞} induced by E.

Definition 6. A conditional expectation E of a unital C^* -algebra A with a finite index is said to have the $Rokhlin\ property$ if there exists a projection $e \in A' \cap A^{\infty}$ satisfying

$$E^{\infty}(e) = (\operatorname{Index} E)^{-1} \cdot 1$$

and a map $A\ni x\mapsto xe$ is injective. We call e a Rokhlin projection.

The following is a key lemma to prove the main theorem

Lemma 7. (Kodaka-Osaka-Teruya:08)

Let $P\subset A$ be an inclusion of unital C*-algebras and E a conditional expectation from A onto P with a finite index. If E has the Rokhlin property with a Rokhlin projection $e\in A'\cap A^\infty$, then there is a unital linear map $\beta\colon A^\infty\to P^\infty$ such that for any $x\in A^\infty$ there exists the unique element y of P^∞ such that $xe=ye=\beta(x)e$ and $\beta(A'\cap A^\infty)\subset P'\cap P^\infty$.

In particular, $\beta_{|A}$ is a unital injective *-homomorphism and $\beta(x) = x$ for all $x \in P$.

Theorem 8. (Kodaka-Osaka-Teruya:09) Let a conditional expectation $E \colon A \to P$ be of index finite type and have the Rokhlin property.

- 1. If tsr(A) = 1, then tsr(P) = 1.
- 2. If RR(A) = 0, then RR(P) = 0.

Proof. We give the sketch of the proof of (1).

Let $x \in P$ and $\varepsilon > 0$. Since $\operatorname{tsr}(A) = 1$, there is an invertible $y \in A$ such that $\|x - y\| < \varepsilon$. Hence $\|\beta(x) - \beta(y)\| = \|x - \beta(y)\| < \varepsilon$. Since $\beta(y) = [(y_n)]$ is invertible in P^{∞} , we have an invertible $y_n \in P$ such that $\|x - y_n\| < \varepsilon$, and $\operatorname{tsr}(P) = 1$.

Definition 9. Let A be a unital C*-algebra. We denote by T(A) the set of all tracial states on A, equipped with the weak* topology. For any element of T(A), we use the same letter for its standard extension to $M_n(A)$ for arbitrary n, and to $M_{\infty}(A) = \bigcup_{n=1}^{\infty} M_n(A)$.

We say that the order on projections over a unital C^* -algebra A is determined by traces if whenever $p,q\in M_\infty(A)$ are projections such that $\tau(p)<\tau(q)$ for all $\tau\in T(A)$, then $p\preceq q$.

Proposition 10. (Osaka-Teruya:10) Let $E: A \to P$ be of index finite type and have the Rokhlin property. Then the restriction map defines a bijection from the set T(A) to the set T(P).

Theorem 11. (O-Teruya:10) Let A be a unital C*-algebra such that the order on projections over A is determined by traces. Let $E\colon A\to P$ be of index finite type. Suppose that E has the Rokhlin property. Then the order on projections over P is determined by traces.

Strongly self-absorbing

A separable, unital C*-algebra \mathcal{D} is called strongly self-absorbing if it is infinite-dimensional and the map $\mathrm{id}_{\mathcal{D}}\otimes 1_{\mathcal{D}}\colon \mathcal{D}\to \mathcal{D}\otimes \mathcal{D}$ given by $d\mapsto d\otimes 1$ is approximately unitarily equivalent to an isomorphism $\varphi\colon \mathcal{D}\to \mathcal{D}\otimes \mathcal{D}$, that is, there is a suquence $(v_n)_{n\in \mathbf{N}}$ of unitaries in $\mathcal{D}\otimes \mathcal{D}$ satisfying

$$||v_n^*(\mathrm{id}_{\mathcal{D}}\otimes 1_{\mathcal{D}}(d))v_n - \varphi(d)|| \to 0 \ (n \to \infty) \ \forall d \in \mathcal{D}.$$

A C*-algebra A is called \mathcal{D} -absorbing if $A \otimes \mathcal{D} \cong A$.

Recall that separable unital C*-algebra \mathcal{D} is said to have $approximately\ inner\ half\ flip$ if the two natural inclusions of \mathcal{D} into $\mathcal{D}\otimes\mathcal{D}$ as the first and second factor, respectively, are approximately unitarily equivalent, i.e., there is a sequence $(v_n)_{n\in\mathbb{N}}$ of unitaries in $\mathcal{D}\otimes\mathcal{D}$ such that

$$||v_n(d \otimes 1_D)v_n^* - 1_D \otimes d|| \to 0 \ (n \to \infty)$$

for $d \in \mathcal{D}$.

In 1978 Effros and Rosenberg proved that if A is AF C*-algebra, A has approximate half inner flip if and only if A is a UHF algebra.

Note that if a separable unital C^* -algebra A has approximately inner half-flip, then A is simple and nuclear.

Under the condition that separable unital C*-algebra \mathcal{D} has approximately inner half flip, Toms and Winter gave the the characterization when \mathcal{D} is strongly self-absorbing:

Theorem 12. (Toms-Winter:07) Let \mathcal{D} be a separable unital C*-algebra such that \mathcal{D} has an approximately inner half flip. Then \mathcal{D} is strongly self-absorbing if and only if there are a unital *-homomorphism $\gamma \colon \mathcal{D} \otimes \mathcal{D} \to \mathcal{D}$ and an approximately central sequence of unital endmorphisms of \mathcal{D}

(i.e. $\exists (\varphi_n) \colon \mathcal{D} \to \mathcal{D}$ such that $\|[\varphi_n(d_1), d_2]\| \to 0$ $(n \to \infty)$ for $\forall d_1, d_2 \in \mathcal{D}$).

Using this characterization we show that if a conditional expectation $E\colon \mathcal{D}\to P$ for an inclusion of separable unital C*-algebras $P\subset \mathcal{D}$ with index finite, has the Rokhlin property and \mathcal{D} is an inductive limit of $weakly\ semiprojective\ C*-algebras\ and\ strongly\ self-absorbing, then <math>P$ is strongly self-absorbing.

Note that known examples of strongly self-absorbing C*-algebras are UHF algebras of infinite type, the Jiang-Su algebras \mathcal{Z} , the Cuntz algebras \mathcal{O}_2 and \mathcal{O}_{∞} , and tensor products of \mathcal{O}_{∞} by UHF algebras of infinite type, that is, they belong to the class of inductive limits of weakly semiprojective C*-algebras.

Theorem 13. (Osaka-Teruya:11) Let $P \subset A$ be an inclusion of separable unital C*-algebras with index finite and A have approximately inner half flip. Suppose that E has the Rokhlin property and A is an inductive limit of weakly semiprojective C*-algebras. Then P has approximately inner half flip.

Theorem 14. (Osaka-Teruya:11) Let $P \subset A$ be an inclusion of unital separable C*-algebras with index finite. Suppose that a conditional expectation $E \colon A \to P$ has the Rokhlin property and A is an inductive limit of weakly semiprojective C*-algebras and strongly self-absorbing. Then P is strongly self-absorbing.

Corollary 15. (Osaka-Teruya:11) Let $P \subset A$ be an inclusion of unital separable C*-algebras with index finite. Suppose that a conditional expectation $E \colon A \to P$ has the Rokhlin property. Suppose that A is one of UHF-algebra of infinite type, \mathcal{O}_2 , \mathcal{O}_∞ , and $\mathcal{O}_\infty \otimes \mathsf{UHF}$ -algebra of infinite type. Then

- 1. $P \cong A$.
- 2. $C^*\langle A, e_P \rangle$ is stably isomorphic to A. If $A = \mathcal{O}_2$, then $C^*\langle A, e_P \rangle \cong \mathcal{O}_2$.

Nuclear dimension

Definition 16. (Winter-Zacharias:10)

Let A be a separable C*-algebra.

- 1. A completely positive map $\varphi\colon \oplus_{i=1}^s M_{r_i} \to A$ has order zero if it preserves orthogonality, i.e., $\varphi(e)\varphi(f)=\varphi(f)\varphi(e)=0$ for $e,f\in \oplus_{i=1}^s M_{r_i}$ with ef=fe=0.
- 2. A completely positive map $\varphi \colon \bigoplus_{i=1}^s M_{r_i} \to A$ is n-decomposable, there is a decomposition $\{1,\ldots,s\} = \coprod_{j=0}^n I_j$ such that the restriction of φ to $\bigoplus_{i\in I_j} M_{r_i}$ has ordere zero for each $j\in\{0,\ldots,n\}$.

- 3. A has decomposition rank n, $\mathrm{dr} A = n$, if n is the least integer such that the following holds : Given $\{a_1,\ldots,a_m\}\subset A$ and $\varepsilon>0$, there is a completely positive approximation property (F,ψ,φ) for a_1,\ldots,a_m within ε , i.e., F is a finite dimensional F, and $\psi\colon A\to F$ and $\varphi\colon F\to A$ are completely positive contruction (=c, c) such that
 - (a) $\|\varphi\psi(a_i) a_i\| < \varepsilon$,
 - (b) φ is n-decomposable.

If no such n exists, we write $drA = \infty$.

- 4. A has nuclear dimension n, $\dim_{\mathrm{nuc}} A = n$, if n is the least integer such that the following holds : Given $\{a_1,\ldots,a_m\}\subset A$ and $\varepsilon>0$, there is a completely positive approximation property (F,ψ,φ) for a_1,\ldots,a_m within ε , i.e., F is a finite dimensional F, and $\psi\colon A\to F$ and $\varphi\colon F\to A$ are completely positive such that
 - (a) $\|\varphi\psi(a_i) a_i\| < \varepsilon$
 - (b) $\|\psi\| \le 1$
 - (c) φ is n-decomposable and each restriction $\varphi_{|\bigoplus_{i\in I_j} M_{r_i}}$ is c. p. c.

If no such n exists, we write $\dim_{\mathrm{nuc}} A = \infty$.

The followings are basic facts about finite decomposition and nuclear dimension by [Kirchberg-Winter:04], [Winter:10], [Winter-Zacharias:10]:

- 1. If $\dim_{\text{nuc}}(A) \leq n < \infty$, then A is nuclear.
- 2. For any C*-algebras $\dim_{\text{nuc}} A \leq \text{dr} A$.
- 3. $\dim_{\text{nuc}} A = 0$ if and only if drA = 0 if and only if A is an AF algebra.
- 4. Nuclear dimension and decomposition rank in general do not coincide. Indeed, the Toeplitz algebra \mathcal{T} has nuclear dimension at most 2, but its decomposition rank is infinity. Note that if $\mathrm{dr} A \leq n < \infty$, A is quasidiagonal, that is , stably finite. The Toeplitz algebra \mathcal{T} has an isometry, and we know that \mathcal{T} is infinite.

5. Let X be a locally compact Hausdorff space. Then

$$\dim_{\text{nuc}} C_0(X) = \text{dr} C_0(X).$$

In particular, if X is second countable,

$$\dim_{\text{nuc}} C_0(X) = \operatorname{dr} C_0(X) = \dim X.$$

- 6. For any $n \in \mathbb{N}$ $\dim_{\text{nuc}} A = \dim_{\text{nuc}} (M_n(A)) = \dim_{\text{nuc}} (A \otimes \mathcal{K}).$
- 7. If $B \subset A$ is full hereditary C*-algebra, then $\dim_{\mathrm{nuc}}(B) = \dim_{\mathrm{nuc}}(A)$.

Theorem 17. (Osaka-Teruya:10) Let $P \subset A$ be an inclusion of unital C*-algebras and $E \colon A \to P$ be a faithful conditional expectation of index finite. Suppose that E has the Rokhlin property.

1.

$$drP \le drA$$

2.

 $\dim_{\text{nuc}} P \leq \dim_{\text{nuc}} A.$

Corollary 18. Let A be a separable unital C*-algebra and α be an action of a finite group G on A. Suppose that α has the Rokhlin property. Then we have

1.

$$dr(A^{\alpha}) \le drA$$
$$dr(A \rtimes_{\alpha} G) \le drA.$$

2.

$$\dim_{\mathrm{nuc}}(A^{\alpha}) \leq \dim_{\mathrm{nuc}} A$$
$$\dim_{\mathrm{nuc}}(A \rtimes_{\alpha} G) \leq \dim_{\mathrm{nuc}} A.$$

3. If A has locally finite nuclear dimension, then A^{α} and $A \rtimes_{\alpha} G$ have locally finite nuclear dimension.

Remark 19. When α does not have the Rokhlin property, generally the estimate in Corollary 18 would not be correct.

Indeed, let α be an symmetry action constructed by [Blackadar:90] such that $CAR^{\mathbf{Z}/2\mathbf{Z}}$ is not AF C*-algebra.

Then α does not have the Rokhlin property by [N. C. Phillips:06], and we know that $\dim_{\mathrm{nuc}}(CAR^{\mathbf{Z}/2\mathbf{Z}})=1$ (In fact, $CAR^{\mathbf{Z}/2\mathbf{Z}}$ can be realized as the inductive limits of $(C(S^1)\otimes M_{2^{2n-1}})\oplus (C(S^1)\otimes M_{2^{2n-1}})$), but $\dim_{\mathrm{nuc}}(CAR)=0$.

References

- [1] B. Blackadar, Symmetries of the CAR algebras, Annals of Math. **131**(1990), 589 623.
- [2] B. Blackadar and D. Handelman, Dimension functions and traces on C*-algebras, J. Funct. Anal. **45**(1982), 297 340.
- [3] L. G. Brown and G. K. Pedersen, C^* -algebras of real rank zero, J. Funct. Anal. **99**(1991), p. 131–149.
- [4] M. D. Choi, A Schwarts inequality for positive linear maps on C*-algebras, Illinois J. Math. **18**(1974), 565 574.
- [5] U. Haagerup, Quasi-traces on exact C^* algebras are traces, preprint, 1991.
- [6] M. Izumi, Inclusions of $simple\ C^*$ -algebras, J. reine angew. Math. **547** (2002), p. 97–138.
- [7] M. Izumi, Finite group actions on C*-algebras with the Rohlin property–I, Duke Math. J. **122**(2004), p. 233–280.

- [8] J. A. Jeong and H. Osaka, Extremally rich C*-crossed products and the cancellation property, J. Austral. Math. Soc. (Series A) **64**(1998), 285 301.
- [9] J. A. Jeong, H. Osaka, N. C. Phillips and T. Teruya, Cancellation for inclusions of C*-algebras of finite depth, Indiana U. Math. J. **58**(2009), 1537 1564.
- [10] X. Jiang and H. Sue, $On~a~simple~unital~projectionless~C^*-algebras$ Amer. J. Math **121**(1999), p. 359–413.
- [11] J. F. R. Jones, Index for subfactors, Inventiones Math. **72**(1983), p. 1–25
- [12] E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Anal. **129**(1995), no. 1, 35 63.
- [13] E. Kirchberg and M. Rørdam, Non-simply $purely\ infinite\ C^*\text{-}algebras$, Amer. J. Math. **122**(2000), 637 666.

- [14] E. Kirchberg and W. Winter, Covering dimension and quasidiagonality, Inter. J. Math. 15(2004), 63–85.
- [15] K. Kodaka, H. Osaka, and T. Teruya, *The Rohlin property for inclusions of C*-algebras with a finite Watatani Index*, Contemporary Mathematics **503**(2009), 177 195.
- [16] H. Lin, $Tracial\ AF\ C^*$ -algebras, Trans. Amer. Math. Soc. **353**(2001), 693–722.
- [17] H. Lin, Simple nuclear C*-algebras of tracial topological rank one, arXiv:math.OA/0401240, 2004.
- [18] T. A. Loring, Lifting Solutions to Perturbing Problems in C*-algebras, Fields Institute Monographs no. 8, American Mathematical Society, Providence RI, 1997.
- [19] H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin property, to appear in Math. Z. (arXiv:math.OA/0704.3651).

- [20] H. Osaka and T. Teruya, Strongly self-absorbing property for inclusions of C^* -algebras with a finite Watatani index, arxiv:math.OA/1002.4233.
- [21] V. I. Paulsen, $Completely\ bounded\ maps$ and dilations, Pitman Research Notes in Mathematics 146(1986).
- [22] N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C^* -algebras, arXiv:math.OA/0609782.
- [23] N. C. Phillips, Finite cyclic actions with the tracial Rokhlin property, Trans. Amer. Math. Soc., to appear (arXiv:mathOA/0609785).
- [24] M. A. Rieffel, $Dimension \ and \ stable \ rank \ in \ the$ $K\text{-}theory \ of \ C^*\text{-}algebras$, Proc. London Math. Soc. **46**(1983), 301–333.
- [25] M. Rørdam, On the structure of simple C*-algebras tensored with a UHF algebra II, J. Funct. Anal. **107**(1992), 255 269.

- [26] M. Rørdam, Classification of nuclear, simple C*-algebras, Encyclopaedia Math. Sci. **126**, Springer, Berlin, 2002.
- [27] M. Rordam, The stable and the real rank of \mathcal{Z} -absorbing C^* -algebras, Inter. J. Math. 10(2004), 1065–1084.
- [28] M. Rordam and W. Winter, $The\ Jiang-Su\ algebra\ revised$, J. reine angew. Math. 642(2010), 129 155.
- [29] S. Wassermann, Slice map problem for C^* -algebras, Proc. London Math. Soc. (3), 32(1976), 537 559.
- [30] Y. Watatani, $Index\ for\ C^*$ -subalgebras, Mem. Amer. Math. Soc. **424**, Amer. Math. Soc., Providence, R. I., (1990).
- [31] W. Winter, Covering dimension for nuclear C^* -algebras I, J. Funct. Anal. 199(2003), 535-556.
- [32] W. Winter $Strongly \ self-absorbing \ C^*-algebras$ $are \ \mathcal{Z}\text{-}stable$, arXiv:mathOA/0905.0583.

- [33] W. Winter, $Nuclear\ dimension\ and\ \mathcal{Z}\mbox{-}stability\ of\ perfect\ C*-algebras,}$ arXiv:mathOA/1006.2731.
- [34] W. Winter and J. Zacharias, The nuclear dimension of C^* -algebras, Adv. Math. **224**(2010), 461 498.