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Motivation

Question 1. Given an inclusion P C A of unital
C*-algebras, how closely related is P in A 7

If the Jones index of a I/ factor N is finite with
respect to a I1;-factor M, then M and N share many
common properties such that as hyperfiniteness,

property I', property T', as shown by [Pimsner and
Popa:86].

In the case of inclusion of simple C*-algebras
with a finite Watatani index we could not hope such
an thing. In fact there are examples of inclusion
CAR C CAR x4 Z/2Z such that CAR x,Z/2Z are
not AF by [Blackadar:90] and [Elliott:89].
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Let A be a unital C*-algebra and « an (amenable)
action from a discrete group G on A, and A x, G
its crossed product algebra.

ACc Ax,G

Conditions for A G o Ax,d
(1) Simplicity any | outer O
(2) Property (SP) + (1) any | outer O
(3) Stable rank one Z any <2

finite | Rokhlin O
(2) + (3) finite | any < 2
(4) Real rank zero finite | Rokhlin O
(5) The order on projections || finite | Rokhlin O
is determined by traces
(6) AF, Al, AT, AD finite | Rokhlin O
(7) AH with s.d.g. +(1)+(4) || finite | Rokhlin O
(8) Z-stability finite | Rokhlin O

Z Rokhlin O
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To generalize the previous results for an inclusion
of unital C*-algebras P C A we will give an attention
to a canonical conditional expectation F: Ax,G —
Aby E(3_, agug) = ao, where u: G — A%, G is a
unitary representation such that ugjau; = ay(a) for
any a € A and g € G.
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In this talk we assume that there is a (faithful)
conditional expectation F: A — P.

The following is the contents of this talk:

1. C*-index theory
2. Rokhlin property
3. Strongly self-absorbing

4. Nuclear dimension
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C*-index theory

Definition 2. (Watatani:90)

Let P C A be an inclusion of unital C*-algebras
with a conditional expectation £ from A onto P.

1. A quasi-basis for E is a finite set {(u;,v;)}_; C
A x A such that for every a € A,

a = z”: u; B (v;a) = z”: E (au;) v;.
i=1 i=1

2. When {(u;,v;)}.y is a quasi-basis for E, we
define IndexFE by

IndexFE = i Ui V5.

1=1

When there is no quasi-basis, we write IndexF =
oo. IndexF is called the Watatani index of F.
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Remark 3. We give several remarks about the above
definitions.

1. IndexE does not depend on the choice of the
quasi-basis in the above formula, and it is a central
element of A.

2. Once we know that there exists a quasi-basis, we

can choose one of the form {(w;,w})}™, which

shows that IndexFE' is a positive element.

3. By the above statements, if A is a simple C*-
algebra, then IndexFE is a positive scalar.

4. If IndexE < oo, then E is faithful, that is,
E(z*z) =0 implies x = 0 for x € A.

5. If IndexF < oo, then there is a basic construction
C*(A,e,) such that

C*(A,e,) = {Z xriepy; - i, y; € A,n € N}
i=1

and
PCACC*(A ey,
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where e, is called the Jones projection which
satisfies eyae, = E(a)e, for a € A and epx = xe,
for x € P.

6. If IndexF is finite, then IndexFE is a central
invertible element of A and there is the dual
conditional expectation E from C*(A, ep) onto A
such that

A

E(zepy) = (IndexE) 'zy forx,yc A

by Proposition 2.3.2 of [Watatani:90]. Moreover,
E' has a finite index and faithfulness.

The following is a model for an inclusion of unital
C*-algebras:

Let A be a unital C*-algebra and « an action of a
finite group G on A. Suppose that « is outer. Then

A Cc Ac Ax,G

Is a basic construction.
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Rokhlin property

Definition 4. (Izumi:04) Let o be an action of a
finite group G on a unital C*-algebra A. « is said to
have the Rokhlin property if there exists a partition
of unity {e4}4ec C A'N A consisting of projections
satisfying

(ag)oolen) =egn forg,h € G.

We call {e,}4ec Rokhlin projections.

Here

co(A) = lan) €N, 4): Tim |la,| = 0}
A% = (N, A)/co(A).

We identify A with the C(C*-subalgebra of A
consisting of the equivalence classes of constant
sequences.
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The following observation is our motivation to
introduce the Rokhlin property for the inclusion of
unital C*-algebras with a finite C*-index.

Proposition 5. (Kodaka-Osaka-Teruya 08) Let « be
an action of a finite group G on a unital C"*-algebra
A and E the canonical conditional expectation from
A onto the fixed point algebra P = A defined by

1
E(zx) = %;ag(a;) for x € A,

where #G is the order of G. Then «a has the
Rokhlin property if and only if there is a projection
e € A’ N A% such that E*(e) = ﬁ -1, where E*°
is the conditional expectation from A% onto P
induced by F.
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Definition 6. A conditional expectation E of a unital
C'*-algebra A with a finite index is said to have the
Rokhlin property if there exists a projection e €
A’ N A satisfying

E*(e) = (IndexE)~ ' -1

and a map A © z — xe is injective. We call e a
Rokhlin projection.
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The following is a key lemma to prove the main
theorem
Lemma 7. (Kodaka-Osaka-Teruya:08)

Let P C A be an inclusion of unital C*-algebras
and E a conditional expectation from A onto P with
a finite index. If £ has the Rokhlin property with a
Rokhlin projection e € A’ A, then there is a unital
linear map 3: A% — P*®° such that for any x € A
there exists the unique element y of P°° such that
ze = ye = B(x)e and B(A' N A>°) C P' N P*™.

In particular, 3, is a unital injective *-
homomorphism and G(x) = x for all z € P.
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Theorem 8. (Kodaka-Osaka-Teruya:09) Let a
conditional expectation E: A — P be of index finite
type and have the Rokhlin property.

1. If tsr(A) =1, then tsr(P) = 1.

2. If RR(A) = 0, then RR(P) = 0.

Proof. We give the sketch of the proof of (1).

Let x € P and € > 0. Since tsr(A) = 1, there is
an invertible y € A such that ||z — y|| < . Hence

18(x)=BWw)|l = lx—B(y)| < e. Since B(y) = [(yn)]

is invertible in P°°, we have an invertible y,, € P
such that ||z — y,|| < €, and tsr(P) = 1. (]
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Definition 9. Let A be a unital C*-algebra. We
denote by T'(A) the set of all tracial states on A,
equipped with the weak™ topology. For any element
of T(A), we use the same letter for its standard
extension to M,,(A) for arbitrary n, and to M,,(A) =
U M, (A).

We say that the order on projections over a unital
C*-algebra A is determined by traces if whenever
p,q € My, (A) are projections such that 7(p) < 7(q)
for all 7 € T(A), then p < q.

Proposition 10. (Osaka-Teruya:10) Let F: A — P
be of index finite type and have the Rokhlin property.
Then the restriction map defines a bijection from the

set T(A) to the set T'(P).

Theorem 11. (O-Teruya:10) Let A be a unital C*-
algebra such that the order on projections over A is
determined by traces. Let E£: A — P be of index
finite type. Suppose that E has the Rokhlin property.
Then the order on projections over P is determined
by traces.
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Strongly self-absorbing

A separable, unital C*-algebra D is called strongly
self-absorbing if it is infinite-dimensional and the
map ddp ®1p: D - D XD given by d — d® 1 is
approximately unitarily equivalent to an isomorphism
¢: D — D®D, that is, there is a suquence (vy,)neN
of unitaries in D ® D satisfying

v (idp ® 1p(d))vy, — @(d)]] — 0 (n — o0) Vd € D.

A C*-algebra A is called D-absorbing if AQ D = A.
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Recall that separable unital C*-algebra D is said
to have approximately inner half flip if the two
natural inclusions of D into D ® D as the first
and second factor, respectively, are approximately
unitarily equivalent, i.e., there is a sequence (v, )neN
of unitaries in D ® D such that

|lvn(d @ 1p)v; —1p®d|| — 0 (n — o)

for d € D.

In 1978 Effros and Rosenberg proved that if A is
AF C*-algebra, A has approximate half inner flip if
and only if A is a UHF algebra.

Note that if a separable unital C*-algebra A has
approximately inner half-flip, then A is simple and
nuclear.
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Under the condition that separable unital C*-
algebra D has approximately inner half flip, Toms
and Winter gave the the characterization when D is
strongly self-absorbing:

Theorem 12. (Toms-Winter:07) Let D be a
separable unital C*-algebra such that D has an
approximately inner half flip. Then D is strongly
self-absorbing if and only if there are a unital *-
homomorphism v: D®D — D and an approximately
central sequence of unital endmorphisms of D

(i.e. I(pn): D — D such that ||[pn(dy), ds]|| —
0 (n — oo) for Vdy,ds € D).
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Using this characterization we show that if a
conditional expectation £ : D — P for an inclusion of
separable unital C*-algebras P C D with index finite,
has the Rokhlin property and D is an inductive limit
of weakly semiprojective C*-algebras and strongly
self-absorbing, then P is strongly self-absorbing.

Note that known examples of strongly self-
absorbing C*-algebras are UHF algebras of infinite
type, the Jiang-Su algebras Z, the Cuntz algebras
Oy and O, and tensor products of O, by UHF
algebras of infinite type, that is, they belong to
the class of inductive limits of weakly semiprojective
C*-algebras.
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Theorem 13. (Osaka-Teruya:11) Let P C A be
an inclusion of separable unital C*-algebras with
index finite and A have approximately inner half flip.
Suppose that E has the Rokhlin property and A is an
inductive limit of weakly semiprojective C*-algebras.
Then P has approximately inner half flip.

Theorem 14. (Osaka-Teruya:11) Let P C A be
an inclusion of unital separable C*-algebras with
index finite. Suppose that a conditional expectation
E: A — P has the Rokhlin property and A is an
inductive limit of weakly semiprojective C*-algebras
and strongly self-absorbing. Then P is strongly self-
absorbing.
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Corollary 15. (Osaka-Teruya:11) Let P C A be
an inclusion of unital separable C*-algebras with
index finite. Suppose that a conditional expectation
E: A — P has the Rokhlin property. Suppose that
A is one of UHF-algebra of infinite type, Os, O,
and O,, ® UHF-algebra of infinite type. Then

1. P=A.

2. C*(A,ep) is stably isomorphic to A. If A = O,
then C*<A, €p> = Os.
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Nuclear dimension

Definition 16. (Winter-Zacharias:10)

Let A be a separable C*-algebra.

1. A completely positive map ¢: ®©;_; M,, — A
has order zero if it preserves orthogonality, i.e.,

pe)e(f) = ¢(f)ple) = 0 for e, f € &F_| M,
with ef = fe = 0.

2. A completely positive map ¢: ®;_; M, — A
iIs n-decomposable, there is a decomposition
{1,...,8} = [I;_¢I; such that the restriction
of v to @iteMm has ordere zero for each
7 €{0,...,n}.
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3. A has decomposition rank n, drA = n, if n is
the least integer such that the following holds
Given {ai,...,a,} C A and € > 0, there
is a completely positive approximation property
(F, v, ) for ay,...,a, within g, i.e., F'is a finite
dimensional F', and ¢¥: A — F and ¢: F — A
are completely positive contruction ( = c. p. c)
such that

(a) [le(ai) —aill <e,
(b) ¢ is n-decomposable.

If no such n exists, we write drA = oc.

4. A has nuclear dimension n, dimy,. A4 = n, iIf n

is the least integer such that the following holds

Given {ai,...,a,m} C A and € > 0, there

iIs a completely positive approximation property

(F,, @) for ai,...,a, within €, i.e., F' is a finite

dimensional F', and ¢y: A — F and ¢: FF — A
are completely positive such that

(@) llev(ai) —aill <e
(b) llvll <1

(c) ¢ is n-decomposable and each restriction
Plicr, M, IS C. p. C.

If no such n exists, we write dim,,. 4 = 0.
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The followings are basic facts about finite

decomposition and nuclear dimension by [Kirchberg-
Winter:04], [Winter:10], [Winter-Zacharias:10]:

1. If dimy,c(A) < n < oo, then A is nuclear.
2. For any C*-algebras dim,,. A < drA.

3. dimpu. A =0 if and only if drA = 0 if and only if
A is an AF algebra.

4. Nuclear dimension and decomposition rank in
general do not coincide. Indeed, the Toeplitz
algebra 7 has nuclear dimension at most 2, but
its decomposition rank is infinity. Note that if
drA < n < oo, A is quasidiagonal, that is , stably
finite. The Toeplitz algebra 7 has an isometry,
and we know that 7 is infinite.
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5. Let X be alocally compact Hausdorff space. Then
dimnuc Co(X) = dI‘CQ(X)
In particular, if X is second countable,

dimnuc Co(X) = dI'Co(X) = dim X.

6. For any n € N dimp,c A = dimpu.(M,(A)) =
dimy (A ® K).

7. 1f B C A is full hereditary C*-algebra, then
dimyue(B) = dimpuc(A).
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Theorem 17. (Osaka-Teruya:10) Let P C A be an
inclusion of unital C*-algebras and £: A — P be
a faithful conditional expectation of index finite.
Suppose that E has the Rokhlin property.

drP < drA

dimuc P < dimyue A.
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Corollary 18. Let A be a separable unital C*-algebra
and « be an action of a finite group GG on A. Suppose
that « has the Rokhlin property. Then we have

dr(A%) <drA
dr(A x, G) < drA.

dimy.(A%) < dimp,c A
dimpue(A o G) < dimy, A.

3. If A has locally finite nuclear dimension, then A®
and A X, G have locally finite nuclear dimension.
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Remark 19. When o does not have the Rokhlin
property, generally the estimate in Corollary 18 would
not be correct.

Indeed, let @ be an symmetry action constructed
by [Blackadar:90] such that CARZ/?% is not AF
C*-algebra.

Then o does not have the Rokhlin property
by [N. C. Phillips:06], and we know that
dimpu.(CAR?Z/?%) = 1 (In fact, CAR%/?Z can be
realized as the inductive limits of (C(S1) ® Myzn—1)®
(C(S1) ® My2n-1)), but dim,,.(CAR) = 0.
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